$$
\begin{equation*}
\frac{p}{a}=\binom{T}{T_{0}}^{c}-1 \tag{1}
\end{equation*}
$$

where P-- pressure, T and $T_{0}--m e l t i n g$ point in O_{K} at P pressure and atmospheric pressure respectively, α and c-. constants. For nonpolarized substances, the value a proved to approach in magnitude the so-called internal pressure, determined by the evaporation energy of a substance ()

$$
\begin{equation*}
\alpha=\frac{\lambda-R T}{V} \tag{2}
\end{equation*}
$$

where V -- volume of the 1iquid. The value c for these substances was between 1 and 2. Thus, for argon $c=1.16 / 11 /$. for helium 1.554/12/ and for nitrogen - $1.775 / 11 /$. At $c=1$, the melting point should rise linearly with the pressure. With the rise of c the melting curves T - P decline from the straight line towards the pressure axis. Simon $/ 13 /$ made an attempt to apply equation (1) to the melting of alkali metals, by utilizing the data obtained by Bridgeman $/ 1 /$. It appeared that for them the value c amounts to 3.8 to 4.8 . In the meantime, all the attempts to calculate the value c on the basis of various equations of the state of liquids and solids. (see $/ 14-16 /$) ended up with $1<c<1.5$. Apparently, in the case of the fusing of metals, Simon's equation must be considered to be empirical.

Fig. 3. Pressure dependence of the melting point of copper. Points -.. results of separaఫe experiments.

Calculations show that in the case of fusing of lead and tin $/ 4 /$ the values of c amount to approximately 2.5 and 4.0 respectively. It should be noted, however, that the

